fda

Module: missions.nodes.spatial_filtering.fda

Fisher’s Discriminant Analysis and variants for spatial filtering

Inheritance diagram for pySPACE.missions.nodes.spatial_filtering.fda:

Inheritance diagram of pySPACE.missions.nodes.spatial_filtering.fda

FDAFilterNode

class pySPACE.missions.nodes.spatial_filtering.fda.FDAFilterNode(retained_channels=None, load_path=None, **kwargs)[source]

Bases: pySPACE.missions.nodes.spatial_filtering.spatial_filtering.SpatialFilteringNode

Reuse the implementation of Fisher’s Discriminant Analysis provided by mdp

This node implements the supervised fisher’s discriminant analysis algorithm for spatial filtering.

Parameters
retained_channels:
 

Determines how many of the FDA pseudo channels are retained. Default is None which means “all channels”.

(optional, default: None)

load_path:

An absolute path from which the FDA filter is loaded. If not specified, this matrix is learned from the training data.

(optional, default: None)

Exemplary Call

-
    node : FDAFilter
    parameters:
        retained_channels : 42
Author:

Jan Hendrik Metzen (jhm@informatik.uni-bremen.de)

Created:

2010/02/17

POSSIBLE NODE NAMES:
 
  • FDAFilterNode
  • FDAFilter
  • FDA
POSSIBLE INPUT TYPES:
 
  • TimeSeries

Class Components Summary

_execute(data) Execute learned transformation on data.
_stop_training([debug])
_train(data, label) Remember data and label for later learning of filters.
input_types
is_supervised() Returns whether this node requires supervised training
is_trainable() Returns whether this node is trainable.
store_state(result_dir[, index]) Stores the projection in the given directory result_dir
__init__(retained_channels=None, load_path=None, **kwargs)[source]
is_trainable()[source]

Returns whether this node is trainable.

is_supervised()[source]

Returns whether this node requires supervised training

_train(data, label)[source]

Remember data and label for later learning of filters.

_stop_training(debug=False)[source]
_execute(data)[source]

Execute learned transformation on data.

store_state(result_dir, index=None)[source]

Stores the projection in the given directory result_dir

input_types = ['TimeSeries']