fda¶
Module: missions.nodes.spatial_filtering.fda¶
Fisher’s Discriminant Analysis and variants for spatial filtering
Inheritance diagram for pySPACE.missions.nodes.spatial_filtering.fda:
FDAFilterNode¶
-
class
pySPACE.missions.nodes.spatial_filtering.fda.FDAFilterNode(retained_channels=None, load_path=None, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.spatial_filtering.spatial_filtering.SpatialFilteringNodeReuse the implementation of Fisher’s Discriminant Analysis provided by mdp
This node implements the supervised fisher’s discriminant analysis algorithm for spatial filtering.
- Parameters
retained_channels: Determines how many of the FDA pseudo channels are retained. Default is None which means “all channels”.
(optional, default: None)
load_path: An absolute path from which the FDA filter is loaded. If not specified, this matrix is learned from the training data.
(optional, default: None)
Exemplary Call
- node : FDAFilter parameters: retained_channels : 42
Author: Jan Hendrik Metzen (jhm@informatik.uni-bremen.de)
Created: 2010/02/17
POSSIBLE NODE NAMES: - FDAFilterNode
- FDAFilter
- FDA
POSSIBLE INPUT TYPES: - TimeSeries
Class Components Summary
_execute(data)Execute learned transformation on data. _stop_training([debug])_train(data, label)Remember data and label for later learning of filters. input_typesis_supervised()Returns whether this node requires supervised training is_trainable()Returns whether this node is trainable. store_state(result_dir[, index])Stores the projection in the given directory result_dir -
store_state(result_dir, index=None)[source]¶ Stores the projection in the given directory result_dir
-
input_types= ['TimeSeries']¶