test_source_nodes¶
Module: missions.nodes.source.test_source_nodes
¶
Source nodes to generate test data with specific properties
Using these nodes, the data with defined properties can be used to have a ‘ground truth’. This can be used to test the properties and functionality of entire node chains.
Inheritance diagram for pySPACE.missions.nodes.source.test_source_nodes
:
Class Summary¶
SimpleTimeSeriesSourceNode (\*args, \*\*kwargs) |
A simple test class for unit tests |
DataGenerationTimeSeriesSourceNode ([...]) |
Generate data of two classes for testing |
Classes¶
SimpleTimeSeriesSourceNode
¶
-
class
pySPACE.missions.nodes.source.test_source_nodes.
SimpleTimeSeriesSourceNode
(*args, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.source.time_series_source.TimeSeriesSourceNode
A simple test class for unit tests
Generates the same data for test and training.
POSSIBLE NODE NAMES: - SimpleTimeSeriesSource
- Simple_Test_Source
- SimpleTimeSeriesSourceNode
POSSIBLE INPUT TYPES: - TimeSeries
Class Components Summary
request_data_for_testing
()Returns the data that can be used for testing of subsequent nodes
DataGenerationTimeSeriesSourceNode
¶
-
class
pySPACE.missions.nodes.source.test_source_nodes.
DataGenerationTimeSeriesSourceNode
(ir_generator='Adder([Sine(), GaussianNoise()])', nir_generator='GaussianNoise()', ir_items=100, nir_items=100, ir_drift_vector=None, nir_drift_vector=None, channel_names=None, num_channels=16, ir_label='Target', nir_label='Standard', time_points=100, sampling_frequency=1000, shuffle=True, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.source.time_series_source.TimeSeriesSourceNode
Generate data of two classes for testing
This node can generate data according to the specifications of two different DataGenerators.
It generates objects of the type TimeSeries
- Parameters
ir_generator: A generator of type DataGenerator for data items of the information relevant class. If it is specified in a node chain, it should be given as a string.
(optional, default: 100)
nir_generator: A generator of type DataGenerator for data items of the not information relevant class. If it is specified in a node chain, it should be given as a string.
(optional, default: 100)
ir_items: Number of items that should be generated for the ir class.
(optional, default: 100)
nir_items: Number of items that should be generated for the non ir class.
(optional, default: 100)
channel_names: List of strings for the channel names. Determines also the number of generated channels.
(optional)
num_channels: Number of channels. Unused, if channel_names is set.
(optional, default: 16)
ir_label: The label for the ir_class.
(optional, default: ‘Target’)
nir_label: The label for the ir_class.
(optional, default: ‘Standard’)
shuffle: If the data items for the two classes are shuffled.
(optional, default: True)
time_points: Number of points per channel in a generated TimeSeries object.
(optional, default: 100)
sampling_frequency: Sampling rate of the generated data. Important for sines etc.
A generated time series object has a temporal length of time_points/sampling_frequency
(optional, default: 1000)
ir_drift_vector: Drift of the ir class data. Specify a vector (numpy array) of shape (time_points,num_channels) and the a linear drift in this direction will be added to the generated data: [0 * ir_drift_vector] added to first sample, [1/(ir_items+nir_items) * ir_drift_vector] to the second sample [...] and so on, until [1 * ir_drift_vector] added to last sample.
The specification of the drift vector in the specification can, e.g., be done like this: ir_drift_vector : “eval(__import__(‘numpy’).asarray([[1,1],[2,2]]))”
(optional, default: None)
nir_drift_vector: Drift of the ir class data. See ir_drift_vector.
(optional, default: None)
Exemplary Call
- node : Data_Generation_Source parameters : ir_generator : "Adder([SineGenerator(),GaussianNoiseGenerator()])" nir_generator : "GaussianNoiseGenerator()"
Author: Hendrik Woehrle
Created: 201/07/27
POSSIBLE NODE NAMES: - DataGenerationTimeSeriesSourceNode
- DataGenerationTimeSeriesSource
- Data_Generation_Source
POSSIBLE INPUT TYPES: - TimeSeries
Class Components Summary
generate_data_set
()Generate a dataset using the given generators set_input_dataset
(dataset)Instead of using a given dataset, a new one is generated -
__init__
(ir_generator='Adder([Sine(), GaussianNoise()])', nir_generator='GaussianNoise()', ir_items=100, nir_items=100, ir_drift_vector=None, nir_drift_vector=None, channel_names=None, num_channels=16, ir_label='Target', nir_label='Standard', time_points=100, sampling_frequency=1000, shuffle=True, **kwargs)[source]¶