one_class¶
Module: missions.nodes.classification.one_class¶
Algorithms, using only one class for classification
Though this focuses on one class, the relation to the REST should still
be specified.
Inheritance diagram for pySPACE.missions.nodes.classification.one_class:
Class Summary¶
OneClassClassifierBase([regression, ...]) | 
Base node to handle class labels during training to filter out irrelevant data | 
LibsvmOneClassNode(\*\*kwargs) | 
Interface to one-class SVM in Libsvm package | 
Classes¶
OneClassClassifierBase¶
- 
class 
pySPACE.missions.nodes.classification.one_class.OneClassClassifierBase(regression=False, complexity=1, weight=None, kernel_type='LINEAR', exponent=2, gamma=None, offset=0, nu=0.5, epsilon=0.1, class_labels=None, debug=False, max_time=3600, tolerance=0.001, complexities_path=None, keep_vectors=False, use_list=False, multinomial=False, add_type='ADD_ALL', discard_type='REMOVE_OLDEST', keep_only_sv=False, basket_size=inf, relabel=False, border_handling='USE_ONLY_BORDER_POINTS', scale_factor_small=0.3, scale_factor_tall=0.5, p_threshold=0.8, show_plot=False, save_plot=False, cdt_threshold=10, u_retrain=False, training_set_ratio='DONT_HANDLE_RATIO', plot_storage='./plot_storage', ratio=0.5, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.base.RegularizedClassifierBaseBase node to handle class labels during training to filter out irrelevant data
Class_labels: List of the two or more classes, where first element is the relevant one and the second is the negative class. Class Components Summary
train(data, label)Special mapping for one-class classification 
LibsvmOneClassNode¶
- 
class 
pySPACE.missions.nodes.classification.one_class.LibsvmOneClassNode(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.external.LibSVMClassifierNode,pySPACE.missions.nodes.classification.one_class.OneClassClassifierBaseInterface to one-class SVM in Libsvm package
Parameters
Parameters are as specified in
LibSVMClassifierNode, except thesvm_type, which is set manually in this node to “one-class SVM”.class_labels: see: OneClassClassifierBaseExemplary Call
- node : LibsvmOneClass parameters : complexity : 1 kernel_type : "LINEAR" class_labels : ['Target', 'Standard'] weight : [1,3] debug : True store : True max_iterations : 100
POSSIBLE NODE NAMES: - LibsvmOneClassNode
 - LibsvmOneClass
 
POSSIBLE INPUT TYPES: - FeatureVector
 
Class Components Summary
input_typestrain(data, label)- 
input_types= ['FeatureVector']¶