ORMM¶
Module: missions.nodes.classification.svm_variants.ORMM
¶
One class variants of BRMM based on separation from zero
Inheritance diagram for pySPACE.missions.nodes.classification.svm_variants.ORMM
:
Class Summary¶
OcRmmNode ([outer_boundary]) |
Take zero as opposite class |
OcRmmPerceptronNode ([outer_boundary]) |
Take zero as opposite class for online learning update formula |
L2OcRmmPerceptronNode (\*\*kwargs) |
Squared loss variant of the one-class RMM Perceptron |
SvddPassiveAggressiveNode ([radius, version, ...]) |
Support Vector Data Description like Perceptron’s suggested by Crammer |
UnaryPA0Node (\*\*kwargs) |
PA0 Node for unary classification |
UnaryPA1Node (\*\*kwargs) |
PA1 Node for unary classification |
UnaryPA2Node (\*\*kwargs) |
PA2 Node for unary classification |
Classes¶
OcRmmNode
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
OcRmmNode
(outer_boundary=False, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.brmm.RMM2Node
,pySPACE.missions.nodes.classification.one_class.OneClassClassifierBase
Take zero as opposite class
References
main author Krell, M. M. and Woehrle, H. title New one-class classifiers based on the origin separation approach journal Pattern Recognition Letters publisher Elsevier doi 10.1016/j.patrec.2014.11.008 year 2015 Exemplary Call
- node : OcRmmNode parameters : complexity : 1.0 class_labels : ['Target'] range : 4
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2013/08/16
POSSIBLE NODE NAMES: - OcRmmNode
- OcRmm
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
_execute
(data)_inc_train
(data, label)Special wrapper needed to avoid wrong or unknown label append_weights_and_class_factors
(label)Only label zero is expected and label factor one is used train
(data, label)Forward to one class method -
append_weights_and_class_factors
(label)[source]¶ Only label zero is expected and label factor one is used
-
_inc_train
(data, label)[source]¶ Special wrapper needed to avoid wrong or unknown label
Mostly code copy from train method.
-
__hyperparameters
= set([ChoiceParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, BooleanParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, NoOptimizationParameter<input_dim>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<debug>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, QUniformParameter<max_time>, NoOptimizationParameter<offset_factor>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶
OcRmmPerceptronNode
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
OcRmmPerceptronNode
(outer_boundary=False, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.brmm.RmmPerceptronNode
Take zero as opposite class for online learning update formula
References
main author Krell, M. M. and Woehrle, H. title New one-class classifiers based on the origin separation approach journal Pattern Recognition Letters publisher Elsevier doi 10.1016/j.patrec.2014.11.008 year 2015 Exemplary Call
- node : OcRmmPerceptronNode parameters : complexity : 1.0 class_labels : ['Target'] range : 4
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2014/01/02
POSSIBLE NODE NAMES: - OcRmmPerceptron
- OcRmmPerceptronNode
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
_execute
(data)_inc_train
(data, label)Special wrapper needed to avoid wrong or unknown label train
(data, label)Code copy from OneClassClassifierBase -
_inc_train
(data, label)[source]¶ Special wrapper needed to avoid wrong or unknown label
Mostly code copy from train method.
-
__hyperparameters
= set([NoOptimizationParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, BooleanParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, NoOptimizationParameter<version>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, NoOptimizationParameter<input_dim>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<offset_factor>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, QUniformParameter<max_time>, NoOptimizationParameter<debug>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶
L2OcRmmPerceptronNode
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
L2OcRmmPerceptronNode
(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.ORMM.OcRmmPerceptronNode
Squared loss variant of the one-class RMM Perceptron
References
main author Krell, M. M. and Woehrle, H. title New one-class classifiers based on the origin separation approach journal Pattern Recognition Letters publisher Elsevier doi 10.1016/j.patrec.2014.11.008 year 2015 See also
Exemplary Call
- node : L2OcRmmPerceptronNode parameters : complexity : 1.0 class_labels : ['Target'] range : 4
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2014/04/28
POSSIBLE NODE NAMES: - L2OcRmmPerceptron
- L2OcRmmPerceptronNode
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
-
__hyperparameters
= set([NoOptimizationParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, NoOptimizationParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, NoOptimizationParameter<version>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, QUniformParameter<max_time>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<debug>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, NoOptimizationParameter<input_dim>, NoOptimizationParameter<offset_factor>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶
SvddPassiveAggressiveNode
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
SvddPassiveAggressiveNode
(radius=0, version=1, radius_opt=False, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.ORMM.OcRmmPerceptronNode
Support Vector Data Description like Perceptron’s suggested by Crammer
References
main author Crammer, K. and Dekel, O. and Keshet, J. and Shalev-Shwartz, S. and Singer, Y. title Online Passive-Aggressive Algorithms journal Journal of Machine Learning Research doi 10.1016/j.patrec.2013.09.018 volume 7 pages 551 - 585 year 2006 Parameters
radius: Maximum range parameter allowed for sphere
(optional, default: 0)
radius_opt: Optimize the range parameter as described in reference. If no optimization is used, the radius parameter defines the used range.
(optional, default: False)
version: Defines the handling of loss:
- 0: hard margin with zero loss on new sample (PA0),
- 1: soft margin with linear loss punishment (PA1),
- 2: soft margin with squared loss punishment (PA2).
For more details refer to the given reference.
(optional, default: 1)
Exemplary Call
- node : SvddPassiveAggressive parameters : complexity : 1.0 class_labels : ['Target', 'REST'] radius : 2 radius_opt : True version : 1
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2014/04/17
POSSIBLE NODE NAMES: - SvddPassiveAggressive
- SvddPassiveAggressiveNode
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
_execute
(data)_train
(data, class_label)-
__hyperparameters
= set([NoOptimizationParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, BooleanParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, LogUniformParameter<radius>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<radius_opt>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, ChoiceParameter<version>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, QUniformParameter<max_time>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<debug>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, NoOptimizationParameter<input_dim>, NoOptimizationParameter<offset_factor>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶
UnaryPA0Node
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
UnaryPA0Node
(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.ORMM.SvddPassiveAggressiveNode
PA0 Node for unary classification
See also
Exemplary Call
- node : UnaryPA0 parameters : complexity : 1.0 class_labels : ['Target', 'REST'] radius : 2 radius_opt : True
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2014/04/17
POSSIBLE NODE NAMES: - UnaryPA0
- UnaryPA0Node
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
-
__hyperparameters
= set([NoOptimizationParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, BooleanParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, LogUniformParameter<radius>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<radius_opt>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, NoOptimizationParameter<version>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, NoOptimizationParameter<input_dim>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<offset_factor>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, QUniformParameter<max_time>, NoOptimizationParameter<debug>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶
UnaryPA1Node
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
UnaryPA1Node
(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.ORMM.SvddPassiveAggressiveNode
PA1 Node for unary classification
See also
Exemplary Call
- node : UnaryPA1 parameters : complexity : 1.0 class_labels : ['Target', 'REST'] radius : 2 radius_opt : True
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2014/04/17
POSSIBLE NODE NAMES: - UnaryPA1
- UnaryPA1Node
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
-
__hyperparameters
= set([NoOptimizationParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, BooleanParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, LogUniformParameter<radius>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<radius_opt>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, NoOptimizationParameter<version>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, NoOptimizationParameter<input_dim>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<offset_factor>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, QUniformParameter<max_time>, NoOptimizationParameter<debug>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶
UnaryPA2Node
¶
-
class
pySPACE.missions.nodes.classification.svm_variants.ORMM.
UnaryPA2Node
(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.classification.svm_variants.ORMM.SvddPassiveAggressiveNode
PA2 Node for unary classification
See also
Exemplary Call
- node : UnaryPA2 parameters : complexity : 1.0 class_labels : ['Target', 'REST'] radius : 2 radius_opt : True
Input: FeatureVector
Output: PredictionVector
Author: Mario Michael Krell
Created: 2014/04/17
POSSIBLE NODE NAMES: - UnaryPA2
- UnaryPA2Node
POSSIBLE INPUT TYPES: - FeatureVector
Class Components Summary
__hyperparameters
-
__hyperparameters
= set([NoOptimizationParameter<kernel_type>, NoOptimizationParameter<linear_weighting>, BooleanParameter<squared_loss>, NoOptimizationParameter<dtype>, NoOptimizationParameter<use_list>, LogUniformParameter<radius>, NoOptimizationParameter<kwargs_warning>, BooleanParameter<radius_opt>, BooleanParameter<regression>, QLogUniformParameter<max_iterations>, NormalParameter<ratio>, NoOptimizationParameter<output_dim>, NoOptimizationParameter<version>, LogNormalParameter<tolerance>, UniformParameter<nu>, NoOptimizationParameter<store>, BooleanParameter<outer_boundary>, NoOptimizationParameter<input_dim>, LogNormalParameter<epsilon>, NoOptimizationParameter<retrain>, NoOptimizationParameter<offset_factor>, QNormalParameter<offset>, NoOptimizationParameter<omega>, LogUniformParameter<complexity>, QUniformParameter<max_time>, NoOptimizationParameter<debug>, LogUniformParameter<range_>, NoOptimizationParameter<keep_vectors>])¶