time_series_sink¶
Module: missions.nodes.sink.time_series_sink
¶
Gather all time series objects that are passed through
Author: | Jan Hendrik Metzen (jhm@informatik.uni-bremen.de) |
---|---|
Created: | 2008/11/28 |
Inheritance diagram for pySPACE.missions.nodes.sink.time_series_sink
:
TimeSeriesSinkNode
¶
-
class
pySPACE.missions.nodes.sink.time_series_sink.
TimeSeriesSinkNode
(sort_string=None, merge=False, **kwargs)[source]¶ Bases:
pySPACE.missions.nodes.base_node.BaseNode
Collect all
time series objects
in acollection
Parameters
sort_string: A lambda function string that is passed to the TimeSeriesDataset and evaluated before the data is stored.
(optional, default: None)
max_num_stored_objects: Number of maximal stored time series objects. Can be used if only a part of a dataset should be exported, e.g. for size purposes in debugging. Applies to train and test set separately.
(optional, default: numpy.inf)
merge: Can be set to true if the use wants to get one timeseries containing the entier input data
(optional, default: False)
Exemplary Call
- node: Time_Series_Sink
Author: Jan Hendrik Metzen (jhm@informatik.uni-bremen.de)
Created: 2008/11/28
LastChange: 2011/04/13 Anett Seeland (anett.seeland@dfki.de)
POSSIBLE NODE NAMES: - TimeSeriesSinkNode
- TimeSeriesSink
- Time_Series_Sink
POSSIBLE INPUT TYPES: - TimeSeries
Class Components Summary
_get_train_set
(use_test_data)Returns the data that can be used for training _train
(data, label)get_result_dataset
()Return the result input_types
is_supervised
()Returns whether this node requires supervised training is_trainable
()Returns whether this node is trainable. merge_time_series
(input_collection)Merges all timeseries of the input_collection to one big timeseries process_current_split
()Compute the results of this sink node for the current split of the data reset
()Reset the state of the object to the clean state it had after its -
input_types
= ['TimeSeries']¶
-
process_current_split
()[source]¶ Compute the results of this sink node for the current split of the data into train and test data