prediction_vector_sink¶
Module: missions.nodes.sink.prediction_vector_sink¶
Collect prediction vectors
Inheritance diagram for pySPACE.missions.nodes.sink.prediction_vector_sink:
PredictionVectorSinkNode¶
- 
class 
pySPACE.missions.nodes.sink.prediction_vector_sink.PredictionVectorSinkNode(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.base_node.BaseNodeCollect all
PredictionVectorDatasetelements that are passed through it in a collection of typeprediction_vector.Note
The code is heavily based on its counterpart for
FeatureVectorelements that can be found inFeatureVectorSinkNodeExemplary Call
- node: PredictionVectorSink
Input: PredictionVector
Output: PredictionVectorDataset
Author: Andrei Ignat (andrei_cristian.ignat@dfki.de)
Created: 2014/10/15
POSSIBLE NODE NAMES: - PredictionVectorSinkNode
 - PredictionVectorSink
 
POSSIBLE INPUT TYPES: - PredictionVector
 
Class Components Summary
_create_result_sets()Instantiate the PredictionVectorDataset_train(data, label)get_result_dataset()Return the result dataset input_typesis_supervised()Returns whether this node requires supervised training is_trainable()Returns whether this node is trainable. process_current_split()Compute the results of this sink node for the current split reset()Reset the state of the object to the clean state it had after its - 
input_types= ['PredictionVector']¶ 
- 
is_trainable()[source]¶ Returns whether this node is trainable.
Since we want to sink the training examples as well, this function wil return True