prediction_vector_sink

Module: missions.nodes.sink.prediction_vector_sink

Collect prediction vectors

Inheritance diagram for pySPACE.missions.nodes.sink.prediction_vector_sink:

Inheritance diagram of pySPACE.missions.nodes.sink.prediction_vector_sink

PredictionVectorSinkNode

class pySPACE.missions.nodes.sink.prediction_vector_sink.PredictionVectorSinkNode(**kwargs)[source]

Bases: pySPACE.missions.nodes.base_node.BaseNode

Collect all PredictionVectorDataset elements that are passed through it in a collection of type prediction_vector.

Note

The code is heavily based on its counterpart for FeatureVector elements that can be found in FeatureVectorSinkNode

Exemplary Call

-
    node: PredictionVectorSink
Input:

PredictionVector

Output:

PredictionVectorDataset

Author:

Andrei Ignat (andrei_cristian.ignat@dfki.de)

Created:

2014/10/15

POSSIBLE NODE NAMES:
 
  • PredictionVectorSinkNode
  • PredictionVectorSink
POSSIBLE INPUT TYPES:
 
  • PredictionVector

Class Components Summary

_create_result_sets() Instantiate the PredictionVectorDataset
_train(data, label)
get_result_dataset() Return the result dataset
input_types
is_supervised() Returns whether this node requires supervised training
is_trainable() Returns whether this node is trainable.
process_current_split() Compute the results of this sink node for the current split
reset() Reset the state of the object to the clean state it had after its
input_types = ['PredictionVector']
__init__(**kwargs)[source]
reset()[source]

Reset the state of the object to the clean state it had after its initialization

is_trainable()[source]

Returns whether this node is trainable.

Since we want to sink the training examples as well, this function wil return True

is_supervised()[source]

Returns whether this node requires supervised training

_train(data, label)[source]
_create_result_sets()[source]

Instantiate the PredictionVectorDataset

process_current_split()[source]

Compute the results of this sink node for the current split of the data into train and test data

get_result_dataset()[source]

Return the result dataset