prediction_vector_sink¶
Module: missions.nodes.sink.prediction_vector_sink
¶
Collect prediction vectors
Inheritance diagram for pySPACE.missions.nodes.sink.prediction_vector_sink
:
PredictionVectorSinkNode
¶
-
class
pySPACE.missions.nodes.sink.prediction_vector_sink.
PredictionVectorSinkNode
(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.base_node.BaseNode
Collect all
PredictionVectorDataset
elements that are passed through it in a collection of typeprediction_vector
.Note
The code is heavily based on its counterpart for
FeatureVector
elements that can be found inFeatureVectorSinkNode
Exemplary Call
- node: PredictionVectorSink
Input: PredictionVector
Output: PredictionVectorDataset
Author: Andrei Ignat (andrei_cristian.ignat@dfki.de)
Created: 2014/10/15
POSSIBLE NODE NAMES: - PredictionVectorSinkNode
- PredictionVectorSink
POSSIBLE INPUT TYPES: - PredictionVector
Class Components Summary
_create_result_sets
()Instantiate the PredictionVectorDataset
_train
(data, label)get_result_dataset
()Return the result dataset input_types
is_supervised
()Returns whether this node requires supervised training is_trainable
()Returns whether this node is trainable. process_current_split
()Compute the results of this sink node for the current split reset
()Reset the state of the object to the clean state it had after its -
input_types
= ['PredictionVector']¶
-
is_trainable
()[source]¶ Returns whether this node is trainable.
Since we want to sink the training examples as well, this function wil return True