prediction_vector_source¶
Module: missions.nodes.source.prediction_vector_source
¶
Source for PredictionVector
data from *.csv and *.pickle files
Note
Nearly a total copy of the time_series_source
.
The important part of the code can be found in the corresponding
metadata.yaml .
Inheritance diagram for pySPACE.missions.nodes.source.prediction_vector_source
:
PredictionVectorSourceNode
¶
-
class
pySPACE.missions.nodes.source.prediction_vector_source.
PredictionVectorSourceNode
(**kwargs)[source]¶ Bases:
pySPACE.missions.nodes.base_node.BaseNode
Source for samples of type
PredictionVector
This node reads
PredictionVector
elements accumulated in aprediction_vector
and passes them into thenode_chain
. As described inprediction_vector
it is important, that the storage format is correct specified in the metadata.yaml. If the dataset has been constructed by pySPACE, this is done automatically.Note
This node is still in an experimental phase as of 17 Dec 2014. Further testing and development are required before releasing the node.
Parameters
Exemplary Call
- node : PredictionVectorSource
Author: Andrei Ignat (andrei_cristian.ignat@dfki.de)
Created: 2014/17/12
POSSIBLE NODE NAMES: - PredictionVectorSource
- PredictionVectorSourceNode
POSSIBLE INPUT TYPES: - PredictionVector
Class Components Summary
get_metadata
(key)Return the value corresponding to the given key from the dataset meta data of this source node. input_types
register_input_node
(node)Register the given node as input request_data_for_testing
()Returns the data that can be used for testing of subsequent nodes request_data_for_training
(use_test_data)Returns the time windows that can be used for training of subsequent nodes set_input_dataset
(dataset)Sets the dataset from which this node reads the data train_sweep
(use_test_data)Performs the actual training of the node. use_next_split
()Use the next split of the data into training and test data. -
input_types
= ['PredictionVector']¶
-
use_next_split
()[source]¶ Use the next split of the data into training and test data. Returns True if more splits are available, otherwise False.
This method is useful for benchmarking
-
train_sweep
(use_test_data)[source]¶ Performs the actual training of the node. .. note:: Source nodes cannot be trained
-
request_data_for_training
(use_test_data)[source]¶ Returns the time windows that can be used for training of subsequent nodes